Jump to content

Dietmar

Member
  • Posts

    860
  • Joined

  • Last visited

  • Days Won

    4
  • Donations

    0.00 USD 
  • Country

    Germany

Dietmar last won the day on October 19 2022

Dietmar had the most liked content!

6 Followers

About Dietmar

Profile Information

  • OS
    XP Pro x86

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

Dietmar's Achievements

136

Reputation

  1. @XP-x64-Lover Here it is, the very last acpi.sys bit64. Just rename it to acpi.sys Dietmar https://ufile.io/y0qv5t7w
  2. @Mark-XP yepp, it looks, that because of n modulo 6 = +-1 is forced for any prime and so 1 is prime 2 is not prime 3 is not prime Dietmar
  3. @Mark-XP Here is a new version of the Prime finding program from scratch, this time after crazy hard work with 2 Hidden Layers. Not much difference compared to the use of only 1 Hidden Layer Dietmar package multiof3; import java.security.SecureRandom; import java.util.Arrays; public class Multiof3 { private final int numInputNodes = 8; private final int numHiddenNodes1 = 12; private final int numHiddenNodes2 = 12; private final int numOutputNodes = 1; private final double learningRate = 0.0005; private final int numEpochs = 200000; private final double errorThreshold = 0.0000000000000000000000000001; private double[][] inputToHidden1Weights; private double[][] hidden1ToHidden2Weights; private double[][] hidden2ToOutputWeights; private double[] hidden1Biases; private double[] hidden2Biases; private double[] outputBiases; public Multiof3() { SecureRandom random = new SecureRandom(); inputToHidden1Weights = new double[numInputNodes][numHiddenNodes1]; hidden1ToHidden2Weights = new double[numHiddenNodes1][numHiddenNodes2]; hidden2ToOutputWeights = new double[numHiddenNodes2][numOutputNodes]; hidden1Biases = new double[numHiddenNodes1]; hidden2Biases = new double[numHiddenNodes2]; outputBiases = new double[numOutputNodes]; for (int i = 0; i < numInputNodes; i++) { for (int j = 0; j < numHiddenNodes1; j++) { inputToHidden1Weights[i][j] = random.nextDouble() - 0.5; } } for (int i = 0; i < numHiddenNodes1; i++) { for (int j = 0; j < numHiddenNodes2; j++) { hidden1ToHidden2Weights[i][j] = random.nextDouble() - 0.5; } hidden1Biases[i] = random.nextDouble() - 0.5; } for (int i = 0; i < numHiddenNodes2; i++) { for (int j = 0; j < numOutputNodes; j++) { hidden2ToOutputWeights[i][j] = random.nextDouble() - 0.5; } hidden2Biases[i] = random.nextDouble() - 0.5; } for (int i = 0; i < numOutputNodes; i++) { outputBiases[i] = random.nextDouble() - 0.5; } } public double relu(double x) { return Math.max(0, x); } public double reluDerivative(double x) { return x > 0 ? 1 : 0; } public void train(double[][] trainingInputs, double[] trainingTargets) { for (int epoch = 1; epoch <= numEpochs; epoch++) { double totalError = 0.0; for (int i = 0; i < trainingInputs.length; i++) { // Skip excluded inputs if (i == 251 || i == 3) { continue; } double[] input = trainingInputs[i]; double target = trainingTargets[i]; // Forward propagation double[] hiddenOutputs1 = new double[numHiddenNodes1]; for (int j = 0; j < numHiddenNodes1; j++) { double weightedSum = 0.0; for (int k = 0; k < numInputNodes; k++) { weightedSum += inputToHidden1Weights[k][j] * input[k]; } hiddenOutputs1[j] = relu(weightedSum + hidden1Biases[j]); } double[] hiddenOutputs2 = new double[numHiddenNodes2]; for (int j = 0; j < numHiddenNodes2; j++) { double weightedSum = 0.0; for (int k = 0; k < numHiddenNodes1; k++) { weightedSum += hidden1ToHidden2Weights[k][j] * hiddenOutputs1[k]; } hiddenOutputs2[j] = relu(weightedSum + hidden2Biases[j]); } double output = 0.0; for (int j = 0; j < numOutputNodes; j++) { double weightedSum = 0.0; for (int k = 0; k < numHiddenNodes2; k++) { weightedSum += hidden2ToOutputWeights[k][j] * hiddenOutputs2[k]; } output = relu(weightedSum + outputBiases[j]); } // Backward propagation double outputError = target - output; double outputDelta = outputError * reluDerivative(output); double[] hidden2Errors = new double[numHiddenNodes2]; double[] hidden2Deltas = new double[numHiddenNodes2]; for (int j = 0; j < numHiddenNodes2; j++) { double weightedSum = 0.0; for (int k = 0; k < numOutputNodes; k++) { weightedSum += hidden2ToOutputWeights[j][k] * outputDelta; } hidden2Errors[j] = weightedSum; hidden2Deltas[j] = hidden2Errors[j] * reluDerivative(hiddenOutputs2[j]); } double[] hidden1Errors = new double[numHiddenNodes1]; double[] hidden1Deltas = new double[numHiddenNodes1]; for (int j = 0; j < numHiddenNodes1; j++) { double weightedSum = 0.0; for (int k = 0; k < numHiddenNodes2; k++) { weightedSum += hidden1ToHidden2Weights[j][k] * hidden2Deltas[k]; } hidden1Errors[j] = weightedSum; hidden1Deltas[j] = hidden1Errors[j] * reluDerivative(hiddenOutputs1[j]); } // Update weights and biases for (int j = 0; j < numHiddenNodes2; j++) { for (int k = 0; k < numOutputNodes; k++) { hidden2ToOutputWeights[j][k] += learningRate * outputDelta * hiddenOutputs2[j]; } hidden2Biases[j] += learningRate * hidden2Deltas[j]; } for (int j = 0; j < numHiddenNodes1; j++) { for (int k = 0; k < numHiddenNodes2; k++) { hidden1ToHidden2Weights[j][k] += learningRate * hidden2Deltas[k] * hiddenOutputs1[j]; } hidden1Biases[j] += learningRate * hidden1Deltas[j]; } for (int j = 0; j < numInputNodes; j++) { for (int k = 0; k < numHiddenNodes1; k++) { inputToHidden1Weights[j][k] += learningRate * hidden1Deltas[k] * input[j]; } } for (int j = 0; j < numOutputNodes; j++) { outputBiases[j] += learningRate * outputDelta; } totalError += Math.abs(outputError); } if (epoch % 10000 == 0) { System.out.println("Epoch " + epoch + ", Error: " + totalError); } if (totalError < errorThreshold) { System.out.println("Converged at epoch " + epoch); break; }}} public double predict(double[] input) { double[] hiddenOutputs1 = new double[numHiddenNodes1]; for (int j = 0; j < numHiddenNodes1; j++) { double weightedSum = 0.0; for (int k = 0; k < numInputNodes; k++) { weightedSum += inputToHidden1Weights[k][j] * input[k]; } hiddenOutputs1[j] = relu(weightedSum + hidden1Biases[j]); } double[] hiddenOutputs2 = new double[numHiddenNodes2]; for (int j = 0; j < numHiddenNodes2; j++) { double weightedSum = 0.0; for (int k = 0; k < numHiddenNodes1; k++) { weightedSum += hidden1ToHidden2Weights[k][j] * hiddenOutputs1[k]; } hiddenOutputs2[j] = relu(weightedSum + hidden2Biases[j]); } double output = 0.0; for (int j = 0; j < numOutputNodes; j++) { double weightedSum = 0.0; for (int k = 0; k < numHiddenNodes2; k++) { weightedSum += hidden2ToOutputWeights[k][j] * hiddenOutputs2[k]; } output = relu(weightedSum + outputBiases[j]); } return output; } public static void main(String[] args) { // Example usage of the neural network double[][] trainingInputs = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 1, 0}, {0, 0, 0, 0, 0, 1, 1, 1}, {0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 1}, {0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 0, 1, 1, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 1}, {0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 0, 1, 0, 0, 1, 0}, {0, 0, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 1, 0, 1, 1, 0}, {0, 0, 0, 1, 0, 1, 1, 1}, {0, 0, 0, 1, 1, 0, 0, 0}, {0, 0, 0, 1, 1, 0, 0, 1}, {0, 0, 0, 1, 1, 0, 1, 0}, {0, 0, 0, 1, 1, 0, 1, 1}, {0, 0, 0, 1, 1, 1, 0, 0}, {0, 0, 0, 1, 1, 1, 0, 1}, {0, 0, 0, 1, 1, 1, 1, 0}, {0, 0, 0, 1, 1, 1, 1, 1}, {0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 0, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 1}, {0, 0, 1, 0, 0, 1, 0, 0}, {0, 0, 1, 0, 0, 1, 0, 1}, {0, 0, 1, 0, 0, 1, 1, 0}, {0, 0, 1, 0, 0, 1, 1, 1}, {0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 1}, {0, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 1, 1, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1}, {0, 0, 1, 0, 1, 1, 1, 0}, {0, 0, 1, 0, 1, 1, 1, 1}, {0, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 0, 0, 1}, {0, 0, 1, 1, 0, 0, 1, 0}, {0, 0, 1, 1, 0, 0, 1, 1}, {0, 0, 1, 1, 0, 1, 0, 0}, {0, 0, 1, 1, 0, 1, 0, 1}, {0, 0, 1, 1, 0, 1, 1, 0}, {0, 0, 1, 1, 0, 1, 1, 1}, {0, 0, 1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 0, 0, 1}, {0, 0, 1, 1, 1, 0, 1, 0}, {0, 0, 1, 1, 1, 0, 1, 1}, {0, 0, 1, 1, 1, 1, 0, 0}, {0, 0, 1, 1, 1, 1, 0, 1}, {0, 0, 1, 1, 1, 1, 1, 0}, {0, 0, 1, 1, 1, 1, 1, 1}, {0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 1}, {0, 1, 0, 0, 0, 0, 1, 0}, {0, 1, 0, 0, 0, 0, 1, 1}, {0, 1, 0, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 1}, {0, 1, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 0, 1, 1, 1}, {0, 1, 0, 0, 1, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 1, 0}, {0, 1, 0, 0, 1, 0, 1, 1}, {0, 1, 0, 0, 1, 1, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 1}, {0, 1, 0, 0, 1, 1, 1, 0}, {0, 1, 0, 0, 1, 1, 1, 1}, {0, 1, 0, 1, 0, 0, 0, 0}, {0, 1, 0, 1, 0, 0, 0, 1}, {0, 1, 0, 1, 0, 0, 1, 0}, {0, 1, 0, 1, 0, 0, 1, 1}, {0, 1, 0, 1, 0, 1, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 1}, {0, 1, 0, 1, 0, 1, 1, 0}, {0, 1, 0, 1, 0, 1, 1, 1}, {0, 1, 0, 1, 1, 0, 0, 0}, {0, 1, 0, 1, 1, 0, 0, 1}, {0, 1, 0, 1, 1, 0, 1, 0}, {0, 1, 0, 1, 1, 0, 1, 1}, {0, 1, 0, 1, 1, 1, 0, 0}, {0, 1, 0, 1, 1, 1, 0, 1}, {0, 1, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 1, 1, 1, 1}, {0, 1, 1, 0, 0, 0, 0, 0}, {0, 1, 1, 0, 0, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 1, 0}, {0, 1, 1, 0, 0, 0, 1, 1}, {0, 1, 1, 0, 0, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0, 1}, {0, 1, 1, 0, 0, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 1, 1}, {0, 1, 1, 0, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 0, 1}, {0, 1, 1, 0, 1, 0, 1, 0}, {0, 1, 1, 0, 1, 0, 1, 1}, {0, 1, 1, 0, 1, 1, 0, 0}, {0, 1, 1, 0, 1, 1, 0, 1}, {0, 1, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 1, 1, 1, 1}, {0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 0, 1}, {0, 1, 1, 1, 0, 0, 1, 0}, {0, 1, 1, 1, 0, 0, 1, 1}, {0, 1, 1, 1, 0, 1, 0, 0}, {0, 1, 1, 1, 0, 1, 0, 1}, {0, 1, 1, 1, 0, 1, 1, 0}, {0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 1, 1, 0, 0, 1}, {0, 1, 1, 1, 1, 0, 1, 0}, {0, 1, 1, 1, 1, 0, 1, 1}, {0, 1, 1, 1, 1, 1, 0, 0}, {0, 1, 1, 1, 1, 1, 0, 1}, {0, 1, 1, 1, 1, 1, 1, 0}, {0, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 0, 1, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0, 1, 1, 1}, {1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 0, 0, 1, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 1, 0}, {1, 0, 0, 0, 1, 0, 1, 1}, {1, 0, 0, 0, 1, 1, 0, 0}, {1, 0, 0, 0, 1, 1, 0, 1}, {1, 0, 0, 0, 1, 1, 1, 0}, {1, 0, 0, 0, 1, 1, 1, 1}, {1, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 1, 0, 0, 0, 1}, {1, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 1, 1}, {1, 0, 0, 1, 0, 1, 0, 0}, {1, 0, 0, 1, 0, 1, 0, 1}, {1, 0, 0, 1, 0, 1, 1, 0}, {1, 0, 0, 1, 0, 1, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 0, 1}, {1, 0, 0, 1, 1, 0, 1, 0}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 1, 0, 0}, {1, 0, 0, 1, 1, 1, 0, 1}, {1, 0, 0, 1, 1, 1, 1, 0}, {1, 0, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 0, 1}, {1, 0, 1, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 1, 1}, {1, 0, 1, 0, 0, 1, 0, 0}, {1, 0, 1, 0, 0, 1, 0, 1}, {1, 0, 1, 0, 0, 1, 1, 0}, {1, 0, 1, 0, 0, 1, 1, 1}, {1, 0, 1, 0, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 1, 0, 1, 0, 1, 0}, {1, 0, 1, 0, 1, 0, 1, 1}, {1, 0, 1, 0, 1, 1, 0, 0}, {1, 0, 1, 0, 1, 1, 0, 1}, {1, 0, 1, 0, 1, 1, 1, 0}, {1, 0, 1, 0, 1, 1, 1, 1}, {1, 0, 1, 1, 0, 0, 0, 0}, {1, 0, 1, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 0, 0, 1, 0}, {1, 0, 1, 1, 0, 0, 1, 1}, {1, 0, 1, 1, 0, 1, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 1}, {1, 0, 1, 1, 0, 1, 1, 0}, {1, 0, 1, 1, 0, 1, 1, 1}, {1, 0, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 1, 0, 0, 1}, {1, 0, 1, 1, 1, 0, 1, 0}, {1, 0, 1, 1, 1, 0, 1, 1}, {1, 0, 1, 1, 1, 1, 0, 0}, {1, 0, 1, 1, 1, 1, 0, 1}, {1, 0, 1, 1, 1, 1, 1, 0}, {1, 0, 1, 1, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 0, 1, 1}, {1, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 1}, {1, 1, 0, 0, 0, 1, 1, 0}, {1, 1, 0, 0, 0, 1, 1, 1}, {1, 1, 0, 0, 1, 0, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 1}, {1, 1, 0, 0, 1, 0, 1, 0}, {1, 1, 0, 0, 1, 0, 1, 1}, {1, 1, 0, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 1, 1, 0, 1}, {1, 1, 0, 0, 1, 1, 1, 0}, {1, 1, 0, 0, 1, 1, 1, 1}, {1, 1, 0, 1, 0, 0, 0, 0}, {1, 1, 0, 1, 0, 0, 0, 1}, {1, 1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 1, 0, 0, 1, 1}, {1, 1, 0, 1, 0, 1, 0, 0}, {1, 1, 0, 1, 0, 1, 0, 1}, {1, 1, 0, 1, 0, 1, 1, 0}, {1, 1, 0, 1, 0, 1, 1, 1}, {1, 1, 0, 1, 1, 0, 0, 0}, {1, 1, 0, 1, 1, 0, 0, 1}, {1, 1, 0, 1, 1, 0, 1, 0}, {1, 1, 0, 1, 1, 0, 1, 1}, {1, 1, 0, 1, 1, 1, 0, 0}, {1, 1, 0, 1, 1, 1, 0, 1}, {1, 1, 0, 1, 1, 1, 1, 0}, {1, 1, 0, 1, 1, 1, 1, 1}, {1, 1, 1, 0, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 0, 1}, {1, 1, 1, 0, 0, 0, 1, 0}, {1, 1, 1, 0, 0, 0, 1, 1}, {1, 1, 1, 0, 0, 1, 0, 0}, {1, 1, 1, 0, 0, 1, 0, 1}, {1, 1, 1, 0, 0, 1, 1, 0}, {1, 1, 1, 0, 0, 1, 1, 1}, {1, 1, 1, 0, 1, 0, 0, 0}, {1, 1, 1, 0, 1, 0, 0, 1}, {1, 1, 1, 0, 1, 0, 1, 0}, {1, 1, 1, 0, 1, 0, 1, 1}, {1, 1, 1, 0, 1, 1, 0, 0}, {1, 1, 1, 0, 1, 1, 0, 1}, {1, 1, 1, 0, 1, 1, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 1}, {1, 1, 1, 1, 0, 0, 0, 0}, {1, 1, 1, 1, 0, 0, 0, 1}, {1, 1, 1, 1, 0, 0, 1, 0}, {1, 1, 1, 1, 0, 0, 1, 1}, {1, 1, 1, 1, 0, 1, 0, 0}, {1, 1, 1, 1, 0, 1, 0, 1}, {1, 1, 1, 1, 0, 1, 1, 0}, {1, 1, 1, 1, 0, 1, 1, 1}, {1, 1, 1, 1, 1, 0, 0, 0}, {1, 1, 1, 1, 1, 0, 0, 1}, {1, 1, 1, 1, 1, 0, 1, 0}, {1, 1, 1, 1, 1, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 1, 1, 1, 1, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 0}, {1, 1, 1, 1, 1, 1, 1, 1}}; double[] trainingTargets = { 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 }; Multiof3 nn = new Multiof3(); nn.train(trainingInputs, trainingTargets); System.out.println("Prediction for [0, 0, 0, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 0, 0, 0})); System.out.println("Prediction for [0, 0, 0, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 0, 0, 1})); System.out.println("Prediction for [0, 0, 0, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 0, 1, 0})); System.out.println("Prediction for [0, 0, 0, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 0, 1, 1})); System.out.println("Prediction for [0, 0, 0, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 1, 0, 0})); System.out.println("Prediction for [0, 0, 0, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 1, 0, 1})); System.out.println("Prediction for [0, 0, 0, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 1, 1, 0})); System.out.println("Prediction for [0, 0, 0, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 0, 1, 1, 1})); System.out.println("Prediction for [0, 0, 0, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 0, 0, 0})); System.out.println("Prediction for [0, 0, 0, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 0, 0, 1})); System.out.println("Prediction for [0, 0, 0, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 0, 1, 0})); System.out.println("Prediction for [0, 0, 0, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 0, 1, 1})); System.out.println("Prediction for [0, 0, 0, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 1, 0, 0})); System.out.println("Prediction for [0, 0, 0, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 1, 0, 1})); System.out.println("Prediction for [0, 0, 0, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 1, 1, 0})); System.out.println("Prediction for [0, 0, 0, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 0, 1, 1, 1, 1})); System.out.println("Prediction for [0, 0, 0, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 0, 0, 0})); System.out.println("Prediction for [0, 0, 0, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 0, 0, 1})); System.out.println("Prediction for [0, 0, 0, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 0, 1, 0})); System.out.println("Prediction for [0, 0, 0, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 0, 1, 1})); System.out.println("Prediction for [0, 0, 0, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 1, 0, 0})); System.out.println("Prediction for [0, 0, 0, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 1, 0, 1})); System.out.println("Prediction for [0, 0, 0, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 1, 1, 0})); System.out.println("Prediction for [0, 0, 0, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 0, 1, 1, 1})); System.out.println("Prediction for [0, 0, 0, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 0, 0, 0})); System.out.println("Prediction for [0, 0, 0, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 0, 0, 1})); System.out.println("Prediction for [0, 0, 0, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 0, 1, 0})); System.out.println("Prediction for [0, 0, 0, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 0, 1, 1})); System.out.println("Prediction for [0, 0, 0, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 1, 0, 0})); System.out.println("Prediction for [0, 0, 0, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 1, 0, 1})); System.out.println("Prediction for [0, 0, 0, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 1, 1, 0})); System.out.println("Prediction for [0, 0, 0, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 0, 1, 1, 1, 1, 1})); System.out.println("Prediction for [0, 0, 1, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 0, 0, 0})); System.out.println("Prediction for [0, 0, 1, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 0, 0, 1})); System.out.println("Prediction for [0, 0, 1, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 0, 1, 0})); System.out.println("Prediction for [0, 0, 1, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 0, 1, 1})); System.out.println("Prediction for [0, 0, 1, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 1, 0, 0})); System.out.println("Prediction for [0, 0, 1, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 1, 0, 1})); System.out.println("Prediction for [0, 0, 1, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 1, 1, 0})); System.out.println("Prediction for [0, 0, 1, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 0, 1, 1, 1})); System.out.println("Prediction for [0, 0, 1, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 0, 0, 0})); System.out.println("Prediction for [0, 0, 1, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 0, 0, 1})); System.out.println("Prediction for [0, 0, 1, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 0, 1, 0})); System.out.println("Prediction for [0, 0, 1, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 0, 1, 1})); System.out.println("Prediction for [0, 0, 1, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 1, 0, 0})); System.out.println("Prediction for [0, 0, 1, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 1, 0, 1})); System.out.println("Prediction for [0, 0, 1, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 1, 1, 0})); System.out.println("Prediction for [0, 0, 1, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 0, 1, 1, 1, 1})); System.out.println("Prediction for [0, 0, 1, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 0, 0, 0})); System.out.println("Prediction for [0, 0, 1, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 0, 0, 1})); System.out.println("Prediction for [0, 0, 1, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 0, 1, 0})); System.out.println("Prediction for [0, 0, 1, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 0, 1, 1})); System.out.println("Prediction for [0, 0, 1, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 1, 0, 0})); System.out.println("Prediction for [0, 0, 1, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 1, 0, 1})); System.out.println("Prediction for [0, 0, 1, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 1, 1, 0})); System.out.println("Prediction for [0, 0, 1, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 0, 1, 1, 1})); System.out.println("Prediction for [0, 0, 1, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 0, 0, 0})); System.out.println("Prediction for [0, 0, 1, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 0, 0, 1})); System.out.println("Prediction for [0, 0, 1, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 0, 1, 0})); System.out.println("Prediction for [0, 0, 1, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 0, 1, 1})); System.out.println("Prediction for [0, 0, 1, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 1, 0, 0})); System.out.println("Prediction for [0, 0, 1, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 1, 0, 1})); System.out.println("Prediction for [0, 0, 1, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 1, 1, 0})); System.out.println("Prediction for [0, 0, 1, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 0, 1, 1, 1, 1, 1, 1})); System.out.println("Prediction for [0, 1, 0, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 0, 0, 0})); System.out.println("Prediction for [0, 1, 0, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 0, 0, 1})); System.out.println("Prediction for [0, 1, 0, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 0, 1, 0})); System.out.println("Prediction for [0, 1, 0, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 0, 1, 1})); System.out.println("Prediction for [0, 1, 0, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 1, 0, 0})); System.out.println("Prediction for [0, 1, 0, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 1, 0, 1})); System.out.println("Prediction for [0, 1, 0, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 1, 1, 0})); System.out.println("Prediction for [0, 1, 0, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 0, 1, 1, 1})); System.out.println("Prediction for [0, 1, 0, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 0, 0, 0})); System.out.println("Prediction for [0, 1, 0, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 0, 0, 1})); System.out.println("Prediction for [0, 1, 0, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 0, 1, 0})); System.out.println("Prediction for [0, 1, 0, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 0, 1, 1})); System.out.println("Prediction for [0, 1, 0, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 1, 0, 0})); System.out.println("Prediction for [0, 1, 0, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 1, 0, 1})); System.out.println("Prediction for [0, 1, 0, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 1, 1, 0})); System.out.println("Prediction for [0, 1, 0, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 0, 1, 1, 1, 1})); System.out.println("Prediction for [0, 1, 0, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 0, 0, 0})); System.out.println("Prediction for [0, 1, 0, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 0, 0, 1})); System.out.println("Prediction for [0, 1, 0, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 0, 1, 0})); System.out.println("Prediction for [0, 1, 0, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 0, 1, 1})); System.out.println("Prediction for [0, 1, 0, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 1, 0, 0})); System.out.println("Prediction for [0, 1, 0, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 1, 0, 1})); System.out.println("Prediction for [0, 1, 0, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 1, 1, 0})); System.out.println("Prediction for [0, 1, 0, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 0, 1, 1, 1})); System.out.println("Prediction for [0, 1, 0, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 0, 0, 0})); System.out.println("Prediction for [0, 1, 0, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 0, 0, 1})); System.out.println("Prediction for [0, 1, 0, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 0, 1, 0})); System.out.println("Prediction for [0, 1, 0, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 0, 1, 1})); System.out.println("Prediction for [0, 1, 0, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 1, 0, 0})); System.out.println("Prediction for [0, 1, 0, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 1, 0, 1})); System.out.println("Prediction for [0, 1, 0, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 1, 1, 0})); System.out.println("Prediction for [0, 1, 0, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 0, 1, 1, 1, 1, 1})); System.out.println("Prediction for [0, 1, 1, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 0, 0, 0})); System.out.println("Prediction for [0, 1, 1, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 0, 0, 1})); System.out.println("Prediction for [0, 1, 1, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 0, 1, 0})); System.out.println("Prediction for [0, 1, 1, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 0, 1, 1})); System.out.println("Prediction for [0, 1, 1, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 1, 0, 0})); System.out.println("Prediction for [0, 1, 1, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 1, 0, 1})); System.out.println("Prediction for [0, 1, 1, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 1, 1, 0})); System.out.println("Prediction for [0, 1, 1, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 0, 1, 1, 1})); System.out.println("Prediction for [0, 1, 1, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 0, 0, 0})); System.out.println("Prediction for [0, 1, 1, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 0, 0, 1})); System.out.println("Prediction for [0, 1, 1, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 0, 1, 0})); System.out.println("Prediction for [0, 1, 1, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 0, 1, 1})); System.out.println("Prediction for [0, 1, 1, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 1, 0, 0})); System.out.println("Prediction for [0, 1, 1, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 1, 0, 1})); System.out.println("Prediction for [0, 1, 1, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 1, 1, 0})); System.out.println("Prediction for [0, 1, 1, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 0, 1, 1, 1, 1})); System.out.println("Prediction for [0, 1, 1, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 0, 0, 0})); System.out.println("Prediction for [0, 1, 1, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 0, 0, 1})); System.out.println("Prediction for [0, 1, 1, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 0, 1, 0})); System.out.println("Prediction for [0, 1, 1, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 0, 1, 1})); System.out.println("Prediction for [0, 1, 1, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 1, 0, 0})); System.out.println("Prediction for [0, 1, 1, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 1, 0, 1})); System.out.println("Prediction for [0, 1, 1, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 1, 1, 0})); System.out.println("Prediction for [0, 1, 1, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 0, 1, 1, 1})); System.out.println("Prediction for [0, 1, 1, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 0, 0, 0})); System.out.println("Prediction for [0, 1, 1, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 0, 0, 1})); System.out.println("Prediction for [0, 1, 1, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 0, 1, 0})); System.out.println("Prediction for [0, 1, 1, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 0, 1, 1})); System.out.println("Prediction for [0, 1, 1, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 1, 0, 0})); System.out.println("Prediction for [0, 1, 1, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 1, 0, 1})); System.out.println("Prediction for [0, 1, 1, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 1, 1, 0})); System.out.println("Prediction for [0, 1, 1, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{0, 1, 1, 1, 1, 1, 1, 1})); System.out.println("Prediction for [1, 0, 0, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 0, 0, 0})); System.out.println("Prediction for [1, 0, 0, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 0, 0, 1})); System.out.println("Prediction for [1, 0, 0, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 0, 1, 0})); System.out.println("Prediction for [1, 0, 0, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 0, 1, 1})); System.out.println("Prediction for [1, 0, 0, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 1, 0, 0})); System.out.println("Prediction for [1, 0, 0, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 1, 0, 1})); System.out.println("Prediction for [1, 0, 0, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 1, 1, 0})); System.out.println("Prediction for [1, 0, 0, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 0, 1, 1, 1})); System.out.println("Prediction for [1, 0, 0, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 0, 0, 0})); System.out.println("Prediction for [1, 0, 0, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 0, 0, 1})); System.out.println("Prediction for [1, 0, 0, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 0, 1, 0})); System.out.println("Prediction for [1, 0, 0, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 0, 1, 1})); System.out.println("Prediction for [1, 0, 0, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 1, 0, 0})); System.out.println("Prediction for [1, 0, 0, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 1, 0, 1})); System.out.println("Prediction for [1, 0, 0, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 1, 1, 0})); System.out.println("Prediction for [1, 0, 0, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 0, 1, 1, 1, 1})); System.out.println("Prediction for [1, 0, 0, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 0, 0, 0})); System.out.println("Prediction for [1, 0, 0, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 0, 0, 1})); System.out.println("Prediction for [1, 0, 0, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 0, 1, 0})); System.out.println("Prediction for [1, 0, 0, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 0, 1, 1})); System.out.println("Prediction for [1, 0, 0, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 1, 0, 0})); System.out.println("Prediction for [1, 0, 0, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 1, 0, 1})); System.out.println("Prediction for [1, 0, 0, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 1, 1, 0})); System.out.println("Prediction for [1, 0, 0, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 0, 1, 1, 1})); System.out.println("Prediction for [1, 0, 0, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 0, 0, 0})); System.out.println("Prediction for [1, 0, 0, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 0, 0, 1})); System.out.println("Prediction for [1, 0, 0, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 0, 1, 0})); System.out.println("Prediction for [1, 0, 0, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 0, 1, 1})); System.out.println("Prediction for [1, 0, 0, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 1, 0, 0})); System.out.println("Prediction for [1, 0, 0, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 1, 0, 1})); System.out.println("Prediction for [1, 0, 0, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 1, 1, 0})); System.out.println("Prediction for [1, 0, 0, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 0, 1, 1, 1, 1, 1})); System.out.println("Prediction for [1, 0, 1, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 0, 0, 0})); System.out.println("Prediction for [1, 0, 1, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 0, 0, 1})); System.out.println("Prediction for [1, 0, 1, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 0, 1, 0})); System.out.println("Prediction for [1, 0, 1, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 0, 1, 1})); System.out.println("Prediction for [1, 0, 1, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 1, 0, 0})); System.out.println("Prediction for [1, 0, 1, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 1, 0, 1})); System.out.println("Prediction for [1, 0, 1, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 1, 1, 0})); System.out.println("Prediction for [1, 0, 1, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 0, 1, 1, 1})); System.out.println("Prediction for [1, 0, 1, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 0, 0, 0})); System.out.println("Prediction for [1, 0, 1, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 0, 0, 1})); System.out.println("Prediction for [1, 0, 1, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 0, 1, 0})); System.out.println("Prediction for [1, 0, 1, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 0, 1, 1})); System.out.println("Prediction for [1, 0, 1, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 1, 0, 0})); System.out.println("Prediction for [1, 0, 1, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 1, 0, 1})); System.out.println("Prediction for [1, 0, 1, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 1, 1, 0})); System.out.println("Prediction for [1, 0, 1, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 0, 1, 1, 1, 1})); System.out.println("Prediction for [1, 0, 1, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 0, 0, 0})); System.out.println("Prediction for [1, 0, 1, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 0, 0, 1})); System.out.println("Prediction for [1, 0, 1, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 0, 1, 0})); System.out.println("Prediction for [1, 0, 1, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 0, 1, 1})); System.out.println("Prediction for [1, 0, 1, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 1, 0, 0})); System.out.println("Prediction for [1, 0, 1, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 1, 0, 1})); System.out.println("Prediction for [1, 0, 1, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 1, 1, 0})); System.out.println("Prediction for [1, 0, 1, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 0, 1, 1, 1})); System.out.println("Prediction for [1, 0, 1, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 0, 0, 0})); System.out.println("Prediction for [1, 0, 1, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 0, 0, 1})); System.out.println("Prediction for [1, 0, 1, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 0, 1, 0})); System.out.println("Prediction for [1, 0, 1, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 0, 1, 1})); System.out.println("Prediction for [1, 0, 1, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 1, 0, 0})); System.out.println("Prediction for [1, 0, 1, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 1, 0, 1})); System.out.println("Prediction for [1, 0, 1, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 1, 1, 0})); System.out.println("Prediction for [1, 0, 1, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 0, 1, 1, 1, 1, 1, 1})); System.out.println("Prediction for [1, 1, 0, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 0, 0, 0})); System.out.println("Prediction for [1, 1, 0, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 0, 0, 1})); System.out.println("Prediction for [1, 1, 0, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 0, 1, 0})); System.out.println("Prediction for [1, 1, 0, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 0, 1, 1})); System.out.println("Prediction for [1, 1, 0, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 1, 0, 0})); System.out.println("Prediction for [1, 1, 0, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 1, 0, 1})); System.out.println("Prediction for [1, 1, 0, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 1, 1, 0})); System.out.println("Prediction for [1, 1, 0, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 0, 1, 1, 1})); System.out.println("Prediction for [1, 1, 0, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 0, 0, 0})); System.out.println("Prediction for [1, 1, 0, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 0, 0, 1})); System.out.println("Prediction for [1, 1, 0, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 0, 1, 0})); System.out.println("Prediction for [1, 1, 0, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 0, 1, 1})); System.out.println("Prediction for [1, 1, 0, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 1, 0, 0})); System.out.println("Prediction for [1, 1, 0, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 1, 0, 1})); System.out.println("Prediction for [1, 1, 0, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 1, 1, 0})); System.out.println("Prediction for [1, 1, 0, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 0, 1, 1, 1, 1})); System.out.println("Prediction for [1, 1, 0, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 0, 0, 0})); System.out.println("Prediction for [1, 1, 0, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 0, 0, 1})); System.out.println("Prediction for [1, 1, 0, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 0, 1, 0})); System.out.println("Prediction for [1, 1, 0, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 0, 1, 1})); System.out.println("Prediction for [1, 1, 0, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 1, 0, 0})); System.out.println("Prediction for [1, 1, 0, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 1, 0, 1})); System.out.println("Prediction for [1, 1, 0, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 1, 1, 0})); System.out.println("Prediction for [1, 1, 0, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 0, 1, 1, 1})); System.out.println("Prediction for [1, 1, 0, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 0, 0, 0})); System.out.println("Prediction for [1, 1, 0, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 0, 0, 1})); System.out.println("Prediction for [1, 1, 0, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 0, 1, 0})); System.out.println("Prediction for [1, 1, 0, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 0, 1, 1})); System.out.println("Prediction for [1, 1, 0, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 1, 0, 0})); System.out.println("Prediction for [1, 1, 0, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 1, 0, 1})); System.out.println("Prediction for [1, 1, 0, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 1, 1, 0})); System.out.println("Prediction for [1, 1, 0, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 0, 1, 1, 1, 1, 1})); System.out.println("Prediction for [1, 1, 1, 0, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 0, 0, 0})); System.out.println("Prediction for [1, 1, 1, 0, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 0, 0, 1})); System.out.println("Prediction for [1, 1, 1, 0, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 0, 1, 0})); System.out.println("Prediction for [1, 1, 1, 0, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 0, 1, 1})); System.out.println("Prediction for [1, 1, 1, 0, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 1, 0, 0})); System.out.println("Prediction for [1, 1, 1, 0, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 1, 0, 1})); System.out.println("Prediction for [1, 1, 1, 0, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 1, 1, 0})); System.out.println("Prediction for [1, 1, 1, 0, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 0, 1, 1, 1})); System.out.println("Prediction for [1, 1, 1, 0, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 0, 0, 0})); System.out.println("Prediction for [1, 1, 1, 0, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 0, 0, 1})); System.out.println("Prediction for [1, 1, 1, 0, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 0, 1, 0})); System.out.println("Prediction for [1, 1, 1, 0, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 0, 1, 1})); System.out.println("Prediction for [1, 1, 1, 0, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 1, 0, 0})); System.out.println("Prediction for [1, 1, 1, 0, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 1, 0, 1})); System.out.println("Prediction for [1, 1, 1, 0, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 1, 1, 0})); System.out.println("Prediction for [1, 1, 1, 0, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 0, 1, 1, 1, 1})); System.out.println("Prediction for [1, 1, 1, 1, 0, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 0, 0, 0})); System.out.println("Prediction for [1, 1, 1, 1, 0, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 0, 0, 1})); System.out.println("Prediction for [1, 1, 1, 1, 0, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 0, 1, 0})); System.out.println("Prediction for [1, 1, 1, 1, 0, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 0, 1, 1})); System.out.println("Prediction for [1, 1, 1, 1, 0, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 1, 0, 0})); System.out.println("Prediction for [1, 1, 1, 1, 0, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 1, 0, 1})); System.out.println("Prediction for [1, 1, 1, 1, 0, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 1, 1, 0})); System.out.println("Prediction for [1, 1, 1, 1, 0, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 0, 1, 1, 1})); System.out.println("Prediction for [1, 1, 1, 1, 1, 0, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 0, 0, 0})); System.out.println("Prediction for [1, 1, 1, 1, 1, 0, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 0, 0, 1})); System.out.println("Prediction for [1, 1, 1, 1, 1, 0, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 0, 1, 0})); System.out.println("Prediction for [1, 1, 1, 1, 1, 0, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 0, 1, 1})); System.out.println("Prediction for [1, 1, 1, 1, 1, 1, 0, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 1, 0, 0})); System.out.println("Prediction for [1, 1, 1, 1, 1, 1, 0, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 1, 0, 1})); System.out.println("Prediction for [1, 1, 1, 1, 1, 1, 1, 0]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 1, 1, 0})); System.out.println("Prediction for [1, 1, 1, 1, 1, 1, 1, 1]: " + nn.predict(new double[]{1, 1, 1, 1, 1, 1, 1, 1})); } } run: Epoch 10000, Error: 7.642833734616649 Epoch 20000, Error: 1.461764425644927 Epoch 30000, Error: 0.4499382194344326 Epoch 40000, Error: 0.09301380614006294 Epoch 50000, Error: 0.017577414258392432 Epoch 60000, Error: 0.0031626210464552607 Epoch 70000, Error: 5.667526965382752E-4 Epoch 80000, Error: 1.013043007025427E-4 Epoch 90000, Error: 1.8067052883763424E-5 Epoch 100000, Error: 3.2317843317031247E-6 Epoch 110000, Error: 5.7693306709794E-7 Epoch 120000, Error: 1.030476173280448E-7 Epoch 130000, Error: 1.8415555302908615E-8 Epoch 140000, Error: 3.2854035048046626E-9 Epoch 150000, Error: 5.86836579330452E-10 Epoch 160000, Error: 1.0529066507558582E-10 Epoch 170000, Error: 1.8620216479803275E-11 Epoch 180000, Error: 5.0672799289941395E-12 Epoch 190000, Error: 2.3925306180672123E-12 Epoch 200000, Error: 1.1253220577600587E-12 Prediction for [0, 0, 0, 0, 0, 0, 0, 0]: 0.0 Prediction for [0, 0, 0, 0, 0, 0, 0, 1]: 0.9999999999999869 Prediction for [0, 0, 0, 0, 0, 0, 1, 0]: 0.0 Prediction for [0, 0, 0, 0, 0, 0, 1, 1]: 0.8051961813803608 Prediction for [0, 0, 0, 0, 0, 1, 0, 0]: 0.0 Prediction for [0, 0, 0, 0, 0, 1, 0, 1]: 0.999999999999934 Prediction for [0, 0, 0, 0, 0, 1, 1, 0]: 0.0 Prediction for [0, 0, 0, 0, 0, 1, 1, 1]: 1.0000000000000637 Prediction for [0, 0, 0, 0, 1, 0, 0, 0]: 0.0 Prediction for [0, 0, 0, 0, 1, 0, 0, 1]: 0.0 Prediction for [0, 0, 0, 0, 1, 0, 1, 0]: 0.0 Prediction for [0, 0, 0, 0, 1, 0, 1, 1]: 1.0000000000000175 Prediction for [0, 0, 0, 0, 1, 1, 0, 0]: 0.0 Prediction for [0, 0, 0, 0, 1, 1, 0, 1]: 1.000000000000022 Prediction for [0, 0, 0, 0, 1, 1, 1, 0]: 0.0 Prediction for [0, 0, 0, 0, 1, 1, 1, 1]: 0.0 Prediction for [0, 0, 0, 1, 0, 0, 0, 0]: 0.0 Prediction for [0, 0, 0, 1, 0, 0, 0, 1]: 1.0000000000000033 Prediction for [0, 0, 0, 1, 0, 0, 1, 0]: 0.0 Prediction for [0, 0, 0, 1, 0, 0, 1, 1]: 0.9999999999999967 Prediction for [0, 0, 0, 1, 0, 1, 0, 0]: 0.0 Prediction for [0, 0, 0, 1, 0, 1, 0, 1]: 0.0 Prediction for [0, 0, 0, 1, 0, 1, 1, 0]: 0.0 Prediction for [0, 0, 0, 1, 0, 1, 1, 1]: 0.9999999999999927 Prediction for [0, 0, 0, 1, 1, 0, 0, 0]: 0.0 Prediction for [0, 0, 0, 1, 1, 0, 0, 1]: 0.0 Prediction for [0, 0, 0, 1, 1, 0, 1, 0]: 0.0 Prediction for [0, 0, 0, 1, 1, 0, 1, 1]: 0.0 Prediction for [0, 0, 0, 1, 1, 1, 0, 0]: 0.0 Prediction for [0, 0, 0, 1, 1, 1, 0, 1]: 1.0000000000000269 Prediction for [0, 0, 0, 1, 1, 1, 1, 0]: 0.0 Prediction for [0, 0, 0, 1, 1, 1, 1, 1]: 0.9999999999999882 Prediction for [0, 0, 1, 0, 0, 0, 0, 0]: 0.0 Prediction for [0, 0, 1, 0, 0, 0, 0, 1]: 0.0 Prediction for [0, 0, 1, 0, 0, 0, 1, 0]: 0.0 Prediction for [0, 0, 1, 0, 0, 0, 1, 1]: 0.0 Prediction for [0, 0, 1, 0, 0, 1, 0, 0]: 0.0 Prediction for [0, 0, 1, 0, 0, 1, 0, 1]: 1.0000000000000127 Prediction for [0, 0, 1, 0, 0, 1, 1, 0]: 0.0 Prediction for [0, 0, 1, 0, 0, 1, 1, 1]: 4.907185768843192E-14 Prediction for [0, 0, 1, 0, 1, 0, 0, 0]: 0.0 Prediction for [0, 0, 1, 0, 1, 0, 0, 1]: 0.9999999999999576 Prediction for [0, 0, 1, 0, 1, 0, 1, 0]: 0.0 Prediction for [0, 0, 1, 0, 1, 0, 1, 1]: 0.9999999999999998 Prediction for [0, 0, 1, 0, 1, 1, 0, 0]: 0.0 Prediction for [0, 0, 1, 0, 1, 1, 0, 1]: 0.0 Prediction for [0, 0, 1, 0, 1, 1, 1, 0]: 0.0 Prediction for [0, 0, 1, 0, 1, 1, 1, 1]: 1.000000000000021 Prediction for [0, 0, 1, 1, 0, 0, 0, 0]: 0.0 Prediction for [0, 0, 1, 1, 0, 0, 0, 1]: 0.0 Prediction for [0, 0, 1, 1, 0, 0, 1, 0]: 0.0 Prediction for [0, 0, 1, 1, 0, 0, 1, 1]: 0.0 Prediction for [0, 0, 1, 1, 0, 1, 0, 0]: 0.0 Prediction for [0, 0, 1, 1, 0, 1, 0, 1]: 0.9999999999999909 Prediction for [0, 0, 1, 1, 0, 1, 1, 0]: 0.0 Prediction for [0, 0, 1, 1, 0, 1, 1, 1]: 0.0 Prediction for [0, 0, 1, 1, 1, 0, 0, 0]: 0.0 Prediction for [0, 0, 1, 1, 1, 0, 0, 1]: 0.0 Prediction for [0, 0, 1, 1, 1, 0, 1, 0]: 0.0 Prediction for [0, 0, 1, 1, 1, 0, 1, 1]: 0.9999999999999927 Prediction for [0, 0, 1, 1, 1, 1, 0, 0]: 0.0 Prediction for [0, 0, 1, 1, 1, 1, 0, 1]: 0.9999999999999847 Prediction for [0, 0, 1, 1, 1, 1, 1, 0]: 0.0 Prediction for [0, 0, 1, 1, 1, 1, 1, 1]: 0.0 Prediction for [0, 1, 0, 0, 0, 0, 0, 0]: 0.0 Prediction for [0, 1, 0, 0, 0, 0, 0, 1]: 4.440892098500626E-14 Prediction for [0, 1, 0, 0, 0, 0, 1, 0]: 0.0 Prediction for [0, 1, 0, 0, 0, 0, 1, 1]: 1.0000000000000198 Prediction for [0, 1, 0, 0, 0, 1, 0, 0]: 0.0 Prediction for [0, 1, 0, 0, 0, 1, 0, 1]: 0.0 Prediction for [0, 1, 0, 0, 0, 1, 1, 0]: 0.0 Prediction for [0, 1, 0, 0, 0, 1, 1, 1]: 0.9999999999999545 Prediction for [0, 1, 0, 0, 1, 0, 0, 0]: 0.0 Prediction for [0, 1, 0, 0, 1, 0, 0, 1]: 1.0000000000000144 Prediction for [0, 1, 0, 0, 1, 0, 1, 0]: 0.0 Prediction for [0, 1, 0, 0, 1, 0, 1, 1]: 0.0 Prediction for [0, 1, 0, 0, 1, 1, 0, 0]: 0.0 Prediction for [0, 1, 0, 0, 1, 1, 0, 1]: 0.0 Prediction for [0, 1, 0, 0, 1, 1, 1, 0]: 0.0 Prediction for [0, 1, 0, 0, 1, 1, 1, 1]: 0.9999999999999811 Prediction for [0, 1, 0, 1, 0, 0, 0, 0]: 0.0 Prediction for [0, 1, 0, 1, 0, 0, 0, 1]: 0.0 Prediction for [0, 1, 0, 1, 0, 0, 1, 0]: 0.0 Prediction for [0, 1, 0, 1, 0, 0, 1, 1]: 0.9999999999999896 Prediction for [0, 1, 0, 1, 0, 1, 0, 0]: 0.0 Prediction for [0, 1, 0, 1, 0, 1, 0, 1]: 0.0 Prediction for [0, 1, 0, 1, 0, 1, 1, 0]: 0.0 Prediction for [0, 1, 0, 1, 0, 1, 1, 1]: 0.0 Prediction for [0, 1, 0, 1, 1, 0, 0, 0]: 0.0 Prediction for [0, 1, 0, 1, 1, 0, 0, 1]: 0.9999999999999865 Prediction for [0, 1, 0, 1, 1, 0, 1, 0]: 0.0 Prediction for [0, 1, 0, 1, 1, 0, 1, 1]: 0.0 Prediction for [0, 1, 0, 1, 1, 1, 0, 0]: 0.0 Prediction for [0, 1, 0, 1, 1, 1, 0, 1]: 0.0 Prediction for [0, 1, 0, 1, 1, 1, 1, 0]: 0.0 Prediction for [0, 1, 0, 1, 1, 1, 1, 1]: 1.2212453270876722E-14 Prediction for [0, 1, 1, 0, 0, 0, 0, 0]: 0.0 Prediction for [0, 1, 1, 0, 0, 0, 0, 1]: 0.9999999999999927 Prediction for [0, 1, 1, 0, 0, 0, 1, 0]: 0.0 Prediction for [0, 1, 1, 0, 0, 0, 1, 1]: 0.0 Prediction for [0, 1, 1, 0, 0, 1, 0, 0]: 0.0 Prediction for [0, 1, 1, 0, 0, 1, 0, 1]: 0.9999999999999873 Prediction for [0, 1, 1, 0, 0, 1, 1, 0]: 0.0 Prediction for [0, 1, 1, 0, 0, 1, 1, 1]: 0.9999999999999798 Prediction for [0, 1, 1, 0, 1, 0, 0, 0]: 0.0 Prediction for [0, 1, 1, 0, 1, 0, 0, 1]: 2.90878432451791E-14 Prediction for [0, 1, 1, 0, 1, 0, 1, 0]: 0.0 Prediction for [0, 1, 1, 0, 1, 0, 1, 1]: 1.000000000000013 Prediction for [0, 1, 1, 0, 1, 1, 0, 0]: 0.0 Prediction for [0, 1, 1, 0, 1, 1, 0, 1]: 0.9999999999999865 Prediction for [0, 1, 1, 0, 1, 1, 1, 0]: 0.0 Prediction for [0, 1, 1, 0, 1, 1, 1, 1]: 0.0 Prediction for [0, 1, 1, 1, 0, 0, 0, 0]: 0.0 Prediction for [0, 1, 1, 1, 0, 0, 0, 1]: 1.0000000000000144 Prediction for [0, 1, 1, 1, 0, 0, 1, 0]: 0.0 Prediction for [0, 1, 1, 1, 0, 0, 1, 1]: 0.0 Prediction for [0, 1, 1, 1, 0, 1, 0, 0]: 0.0 Prediction for [0, 1, 1, 1, 0, 1, 0, 1]: 9.103828801926284E-15 Prediction for [0, 1, 1, 1, 0, 1, 1, 0]: 0.0 Prediction for [0, 1, 1, 1, 0, 1, 1, 1]: 0.0 Prediction for [0, 1, 1, 1, 1, 0, 0, 0]: 0.0 Prediction for [0, 1, 1, 1, 1, 0, 0, 1]: 0.0 Prediction for [0, 1, 1, 1, 1, 0, 1, 0]: 0.0 Prediction for [0, 1, 1, 1, 1, 0, 1, 1]: 0.0 Prediction for [0, 1, 1, 1, 1, 1, 0, 0]: 0.0 Prediction for [0, 1, 1, 1, 1, 1, 0, 1]: 0.0 Prediction for [0, 1, 1, 1, 1, 1, 1, 0]: 0.0 Prediction for [0, 1, 1, 1, 1, 1, 1, 1]: 0.9999999999999802 Prediction for [1, 0, 0, 0, 0, 0, 0, 0]: 0.0 Prediction for [1, 0, 0, 0, 0, 0, 0, 1]: 0.0 Prediction for [1, 0, 0, 0, 0, 0, 1, 0]: 0.0 Prediction for [1, 0, 0, 0, 0, 0, 1, 1]: 0.999999999999998 Prediction for [1, 0, 0, 0, 0, 1, 0, 0]: 0.0 Prediction for [1, 0, 0, 0, 0, 1, 0, 1]: 0.0 Prediction for [1, 0, 0, 0, 0, 1, 1, 0]: 0.0 Prediction for [1, 0, 0, 0, 0, 1, 1, 1]: 0.0 Prediction for [1, 0, 0, 0, 1, 0, 0, 0]: 0.0 Prediction for [1, 0, 0, 0, 1, 0, 0, 1]: 0.9999999999999936 Prediction for [1, 0, 0, 0, 1, 0, 1, 0]: 0.0 Prediction for [1, 0, 0, 0, 1, 0, 1, 1]: 0.9999999999999989 Prediction for [1, 0, 0, 0, 1, 1, 0, 0]: 0.0 Prediction for [1, 0, 0, 0, 1, 1, 0, 1]: 0.0 Prediction for [1, 0, 0, 0, 1, 1, 1, 0]: 0.0 Prediction for [1, 0, 0, 0, 1, 1, 1, 1]: 0.0 Prediction for [1, 0, 0, 1, 0, 0, 0, 0]: 0.0 Prediction for [1, 0, 0, 1, 0, 0, 0, 1]: 0.0 Prediction for [1, 0, 0, 1, 0, 0, 1, 0]: 0.0 Prediction for [1, 0, 0, 1, 0, 0, 1, 1]: 0.0 Prediction for [1, 0, 0, 1, 0, 1, 0, 0]: 0.0 Prediction for [1, 0, 0, 1, 0, 1, 0, 1]: 0.9999999999999669 Prediction for [1, 0, 0, 1, 0, 1, 1, 0]: 0.0 Prediction for [1, 0, 0, 1, 0, 1, 1, 1]: 0.9999999999999891 Prediction for [1, 0, 0, 1, 1, 0, 0, 0]: 0.0 Prediction for [1, 0, 0, 1, 1, 0, 0, 1]: 0.0 Prediction for [1, 0, 0, 1, 1, 0, 1, 0]: 0.0 Prediction for [1, 0, 0, 1, 1, 0, 1, 1]: 0.0 Prediction for [1, 0, 0, 1, 1, 1, 0, 0]: 0.0 Prediction for [1, 0, 0, 1, 1, 1, 0, 1]: 0.9999999999999847 Prediction for [1, 0, 0, 1, 1, 1, 1, 0]: 0.0 Prediction for [1, 0, 0, 1, 1, 1, 1, 1]: 0.0 Prediction for [1, 0, 1, 0, 0, 0, 0, 0]: 0.0 Prediction for [1, 0, 1, 0, 0, 0, 0, 1]: 0.0 Prediction for [1, 0, 1, 0, 0, 0, 1, 0]: 0.0 Prediction for [1, 0, 1, 0, 0, 0, 1, 1]: 0.9999999999999731 Prediction for [1, 0, 1, 0, 0, 1, 0, 0]: 0.0 Prediction for [1, 0, 1, 0, 0, 1, 0, 1]: 0.0 Prediction for [1, 0, 1, 0, 0, 1, 1, 0]: 0.0 Prediction for [1, 0, 1, 0, 0, 1, 1, 1]: 0.9999999999999749 Prediction for [1, 0, 1, 0, 1, 0, 0, 0]: 0.0 Prediction for [1, 0, 1, 0, 1, 0, 0, 1]: 0.0 Prediction for [1, 0, 1, 0, 1, 0, 1, 0]: 0.0 Prediction for [1, 0, 1, 0, 1, 0, 1, 1]: 0.0 Prediction for [1, 0, 1, 0, 1, 1, 0, 0]: 0.0 Prediction for [1, 0, 1, 0, 1, 1, 0, 1]: 1.00000000000003 Prediction for [1, 0, 1, 0, 1, 1, 1, 0]: 0.0 Prediction for [1, 0, 1, 0, 1, 1, 1, 1]: 0.0 Prediction for [1, 0, 1, 1, 0, 0, 0, 0]: 0.0 Prediction for [1, 0, 1, 1, 0, 0, 0, 1]: 0.0 Prediction for [1, 0, 1, 1, 0, 0, 1, 0]: 0.0 Prediction for [1, 0, 1, 1, 0, 0, 1, 1]: 1.0000000000000153 Prediction for [1, 0, 1, 1, 0, 1, 0, 0]: 0.0 Prediction for [1, 0, 1, 1, 0, 1, 0, 1]: 1.0000000000000095 Prediction for [1, 0, 1, 1, 0, 1, 1, 0]: 0.0 Prediction for [1, 0, 1, 1, 0, 1, 1, 1]: 1.4432899320127035E-14 Prediction for [1, 0, 1, 1, 1, 0, 0, 0]: 0.0 Prediction for [1, 0, 1, 1, 1, 0, 0, 1]: 0.0 Prediction for [1, 0, 1, 1, 1, 0, 1, 0]: 0.0 Prediction for [1, 0, 1, 1, 1, 0, 1, 1]: 0.0 Prediction for [1, 0, 1, 1, 1, 1, 0, 0]: 0.0 Prediction for [1, 0, 1, 1, 1, 1, 0, 1]: 0.0 Prediction for [1, 0, 1, 1, 1, 1, 1, 0]: 0.0 Prediction for [1, 0, 1, 1, 1, 1, 1, 1]: 1.0000000000000016 Prediction for [1, 1, 0, 0, 0, 0, 0, 0]: 0.0 Prediction for [1, 1, 0, 0, 0, 0, 0, 1]: 0.9999999999999829 Prediction for [1, 1, 0, 0, 0, 0, 1, 0]: 0.0 Prediction for [1, 1, 0, 0, 0, 0, 1, 1]: 0.0 Prediction for [1, 1, 0, 0, 0, 1, 0, 0]: 0.0 Prediction for [1, 1, 0, 0, 0, 1, 0, 1]: 1.000000000000018 Prediction for [1, 1, 0, 0, 0, 1, 1, 0]: 0.0 Prediction for [1, 1, 0, 0, 0, 1, 1, 1]: 1.0000000000000238 Prediction for [1, 1, 0, 0, 1, 0, 0, 0]: 0.0 Prediction for [1, 1, 0, 0, 1, 0, 0, 1]: 0.0 Prediction for [1, 1, 0, 0, 1, 0, 1, 0]: 0.0 Prediction for [1, 1, 0, 0, 1, 0, 1, 1]: 0.0 Prediction for [1, 1, 0, 0, 1, 1, 0, 0]: 0.0 Prediction for [1, 1, 0, 0, 1, 1, 0, 1]: 0.0 Prediction for [1, 1, 0, 0, 1, 1, 1, 0]: 0.0 Prediction for [1, 1, 0, 0, 1, 1, 1, 1]: 0.0 Prediction for [1, 1, 0, 1, 0, 0, 0, 0]: 0.0 Prediction for [1, 1, 0, 1, 0, 0, 0, 1]: 1.4876988529977098E-14 Prediction for [1, 1, 0, 1, 0, 0, 1, 0]: 0.0 Prediction for [1, 1, 0, 1, 0, 0, 1, 1]: 0.9999999999999891 Prediction for [1, 1, 0, 1, 0, 1, 0, 0]: 0.0 Prediction for [1, 1, 0, 1, 0, 1, 0, 1]: 0.0 Prediction for [1, 1, 0, 1, 0, 1, 1, 0]: 0.0 Prediction for [1, 1, 0, 1, 0, 1, 1, 1]: 0.0 Prediction for [1, 1, 0, 1, 1, 0, 0, 0]: 0.0 Prediction for [1, 1, 0, 1, 1, 0, 0, 1]: 0.0 Prediction for [1, 1, 0, 1, 1, 0, 1, 0]: 0.0 Prediction for [1, 1, 0, 1, 1, 0, 1, 1]: 0.0 Prediction for [1, 1, 0, 1, 1, 1, 0, 0]: 0.0 Prediction for [1, 1, 0, 1, 1, 1, 0, 1]: 0.0 Prediction for [1, 1, 0, 1, 1, 1, 1, 0]: 0.0 Prediction for [1, 1, 0, 1, 1, 1, 1, 1]: 0.9999999999999811 Prediction for [1, 1, 1, 0, 0, 0, 0, 0]: 0.0 Prediction for [1, 1, 1, 0, 0, 0, 0, 1]: 0.0 Prediction for [1, 1, 1, 0, 0, 0, 1, 0]: 0.0 Prediction for [1, 1, 1, 0, 0, 0, 1, 1]: 1.0000000000000122 Prediction for [1, 1, 1, 0, 0, 1, 0, 0]: 0.0 Prediction for [1, 1, 1, 0, 0, 1, 0, 1]: 1.00000000000001 Prediction for [1, 1, 1, 0, 0, 1, 1, 0]: 0.0 Prediction for [1, 1, 1, 0, 0, 1, 1, 1]: 0.0 Prediction for [1, 1, 1, 0, 1, 0, 0, 0]: 0.0 Prediction for [1, 1, 1, 0, 1, 0, 0, 1]: 0.9999999999999856 Prediction for [1, 1, 1, 0, 1, 0, 1, 0]: 0.0 Prediction for [1, 1, 1, 0, 1, 0, 1, 1]: 4.218847493575595E-15 Prediction for [1, 1, 1, 0, 1, 1, 0, 0]: 0.0 Prediction for [1, 1, 1, 0, 1, 1, 0, 1]: 0.0 Prediction for [1, 1, 1, 0, 1, 1, 1, 0]: 0.0 Prediction for [1, 1, 1, 0, 1, 1, 1, 1]: 1.0000000000000255 Prediction for [1, 1, 1, 1, 0, 0, 0, 0]: 0.0 Prediction for [1, 1, 1, 1, 0, 0, 0, 1]: 0.99999999999999 Prediction for [1, 1, 1, 1, 0, 0, 1, 0]: 0.0 Prediction for [1, 1, 1, 1, 0, 0, 1, 1]: 0.0 Prediction for [1, 1, 1, 1, 0, 1, 0, 0]: 0.0 Prediction for [1, 1, 1, 1, 0, 1, 0, 1]: 0.0 Prediction for [1, 1, 1, 1, 0, 1, 1, 0]: 0.0 Prediction for [1, 1, 1, 1, 0, 1, 1, 1]: 0.0 Prediction for [1, 1, 1, 1, 1, 0, 0, 0]: 0.0 Prediction for [1, 1, 1, 1, 1, 0, 0, 1]: 0.0 Prediction for [1, 1, 1, 1, 1, 0, 1, 0]: 0.0 Prediction for [1, 1, 1, 1, 1, 0, 1, 1]: 0.6732134638331646 Prediction for [1, 1, 1, 1, 1, 1, 0, 0]: 0.0 Prediction for [1, 1, 1, 1, 1, 1, 0, 1]: 0.0 Prediction for [1, 1, 1, 1, 1, 1, 1, 0]: 0.0 Prediction for [1, 1, 1, 1, 1, 1, 1, 1]: 0.0 BUILD SUCCESSFUL (total time: 53 seconds)
  4. Is there a Vista bit32 driver for i219 Dietmar EDIT: This is, what I have found for Vista bit32. The driver with "r" goes up to i210 and may be worth a try. This "r" driver fullfilles all dependencies under win7 SP1, but does not work direct for the i211 or i219 https://ufile.io/bk1awpvj
  5. @Mov AX, 0xDEAD can you see, why the i211 works with kdnet.dll (better kdstub.dll) from win8.1 but the i219 not Dietmar EDIT: I see, that only the i211 gets attention in kdstub.dll and this via e1000_init_nvm_params_i211 proc near. So, may be that for the i211, i217, i218 those nvm parameter are the same. But nvm is different on i219. EDIT2: The i211 has a transmit buffer of 128 KB and a receive buffer of 128 KB. In contrast, the i219 has a larger memory cache with a transmit buffer of 256 KB and a receive buffer of 256 KB. EDIT3: The i211 has a NVM size of 64KB. The i219 Ethernet controller uses a larger NVM size of 256KB.
  6. @Mov AX, 0xDEAD Now I have working Lan Debug for the i211 . But until now no idea, how I can make Lan Debug work for the i219. Can you send me the files which may help and a step by step instruction Dietmar EDIT: I get Lan debug on the i219 to work under XP SP3 on both compis with this boot.ini [boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional" /noexecute=optin /fastdetect /DEBUG /DEBUGPORT=NET /HOST_IP=192.168.2.101 /HOST_PORT=50000 /ENCRYPTION_KEY=1.2.3.4 /CPUFREQ=3000 /TARGET_IP=192.168.2.103 /BREAK /PCI_ID=808615B8 But the most most crazy is, that I need all of this 3 files for Lan Windbg on XP SP3 on both compis and Intel i219 kdnet10.dll from win10 10.0.19041.1 (WinBuild.160101.0800) kdnet.dll from win8.1 6.3.9600.17276 (winblue_r2.140808-0433) kdstub.dll (3.328 Bytes only) I cant believe, so I check several times, always the same. One file of those 3 not in Windows\system32 folder, no Lan Windbg via i219. https://ufile.io/z7t4usd4
  7. @Mov AX, 0xDEAD I found this for Linux, when the i218 works there but the i219 not: The NVM Checksum Is Not Valid I have found Intel's datasheet for I219, Section 10.3.2.2 Checksum Word Calculation says: The Checksum word (Word 0x3F, NVM bytes 0x7E and 0x7F) is used to ensure that the base NVM image is a valid image. The value of this word should be calculated such that after adding all the words (0x00- 0x3F) / bytes (0x00-0x7F), including the Checksum word itself, the sum should be 0xBABA. The initial value in the 16 bit summing register should be 0x0000 and the carry bit should be ignored after each addition. Dietmar pdf datasheet for the i219 https://ufile.io/72w6bumg
  8. @Mov AX, 0xDEAD May be a look at the Linux Source code and a compare between the i218 and i219 and its differnces shows all, what we need to do, for to make the i219 run under XP Dietmar
  9. @Mov AX, 0xDEAD Both the i218 and i219 Ethernet controllers have integrated memory caches to improve network performance. However, the size of the cache differs between the two controllers. The i218 has a 32 KB transmit buffer and a 32 KB receive buffer, which is used to temporarily store data as it is being transmitted or received over the network. This cache size is relatively small compared to other network controllers. In contrast, the i219 features a larger memory cache with a 256 KB transmit buffer and a 256 KB receive buffer. This larger cache allows the i219 to store more data in memory, which can improve network performance in certain situations, such as when transferring large files or streaming high-bandwidth media. In addition to the larger cache size, the i219 also features support for Adaptive Interrupt Coalescing (AIC), which is a feature that can help to reduce interrupt processing overhead and improve network performance. AIC works by grouping network traffic into larger packets, which reduces the number of interrupts that the CPU needs to handle. In summary, while both the i218 and i219 have memory caches to improve network performance, the i219 has a larger cache size and additional features like AIC that can further enhance network performance.
  10. @Mov AX, 0xDEAD Can you compare the Source code of the e1d5132.sys driver with the e1d6232.sys The e1d6232.sys works for all the i211, i217,1218, i219, but the e1d5132.sys works for all of them, only not for the i219. So, a change in for example the Cache size would explain this behavior at once Dietmar
  11. @Mov AX, 0xDEAD "Try /PCI_ID option, intel driver parse PCI_ID before adapter detection." I want to try this, but I have no idea, how to do this. So I need help Dietmar EDIT: Do you think, that it is something like this? That it is not just a bad joke from Intel, to exclude the i219 from XP, but just a small hardware change in i219, so that it cant be used under XP because of a wrong setting via i218 for this? "/PCI_ID - option required for Intel/Broadcom 10Gb/40Gb LAN Controllers (without this option, driver set too small size of memory buffer for 10Gb+ cards)"
  12. @Mov AX, 0xDEAD @Damnation May be the most easy way to understand what is going on with i219 is to look, why i211, i217, i218 work with Windbg via Lan but i219 not under XP. Because, that lan connection is driver independend Dietmar
  13. @Mov AX, 0xDEAD @Damnation The Intel i211 can be installed as i217 or as i218 under XP SP3. The same is true under ndis6, works there together with big ntoskrn8.sys Dietmar EDIT: Under win7 sp1 bit32, the real i211 network can be installed as i219. And the real network i219 can be installed as i218.
  14. @Mov AX, 0xDEAD @Damnation Any idea, what I can test for the longstanding problem with i219 for XP? Now I have 2 days free Dietmar
  15. @Mov AX, 0xDEAD Here are all the for XP SP3 working files from Longhorn 5048 together with the Intel win7 bit32 driver, thanks to @Damnation Dietmar https://ufile.io/22mh6zm7


×
×
  • Create New...